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a) Initially we experimented with applying different models of the same classifier to 
different parts of the face as we thought better results may have been achieved by breaking up 
the face into relevant chunks, i.e the eyes, nose, mouth, etc. The results from each of the 
classifiers on their respective face component would then be weighted separately according to 
how well a classifier could predict the emotion of the entire face from that component in 
isolation. In isolated testing, the eyes provided the strongest indicator of what the correct 
emotion was, followed by the nose, left cheek, right cheek and finally the mouth and the 
weighting was awarded proportionally.  Hence, the more components of the face that agreed on a 
particular emotion, weighted by their validity, the more likely the entire face displayed the given 
emotion. The classifier used on each portion of the face was multinomial logistic regression with 
L2-regularization, though other classifiers (neural networks),  were experimented with and found 
to be less effective. This may in part be due to the sparseness of the data as, when training with a 
set aside validation set, the number of points in the training set is less than the number of 
dimensions we are considering.
 

Separately, in order to reduce differences between the images that are being compared, 
whitening was performed based on the variance obtained from PCA decomposition. It was 
thought that this would help reduce errors in classification on faces with similar emotions 
that differ in skin color or image lighting. After processing the images in this way, a number 
of different classifiers were experimented with to generate a model to classify the data, such 
as SVMM, both linear and with a polynomial kernel, multinomial linear regression with l2 
regularization and neural networks. However, these methods failed to provided better results than 
the base line classifier. 

 
Subsequently, we experimented with various forms of dimensionality reduction, 

particularly PCA.  It was hoped that by projecting the multidimensional data to a simpler space, 
faces displaying similar emotions would be projected close to other faces displaying the same 
emotion. Thus, we could project our labeled examples to the principal components and then 
classify test data using k nearest neighbors. By itself, we found this not be an effective form of 
classification, but it appeared as though we could begin to label examples in the unlabelled set 
using this method. Specifically we could break the unlabelled data set up into chunks, projecting 
it onto 55 of the principal components (obtained from unlabelled data), and then using k nearest 
neighbours to try and obtain new training examples. If the 12 nearest neighbors from the training 
set all had the same class, then we consider it to be a confident indicator that the given unlabeled 
example was displaying the same emotion, and could be added to the training set as such. 
Although we may only find a small percentage of these example, we are able to expand our 
training set and create better models of the data.



 
b)

 In general, our algorithim functions by preprocessing all the faces to normalize the range 
of colors, and reduce the area of the face we are examining. PCA decomposition is performed 
on the processed unlabelled faces and the top principal components are selected. The training 
set is then projected onto this basis, as is the unlabeled set, to allow for the classification of 
new examples to be added to the training set. Given this expanded set of training data and 
pre processed set of faces, we then train a multinomial logistic regression classifier with L2-
regularization.

 
We attempted to improve our results through several forms of data processing. We first 

normalize the image by calculating the mean of each face, subtracting that from each image, and 
finally dividing by the norm of this image. We then apply an oval shaped mask meant to isolate 
the relevant parts of the image and cut out the background that may appear under the chin and to 
the sides of the face. This mask can be seen in detail in the figure below, 

Figure 1: a grey scale image of the facemask applied to each face
 

The full effects of the preprocessing are demonstrated in the following figure. The left 
most image is the initial face, the middle face is after normalization, and the right most image is 
the face with the mask applied at the end of processing. Experiments with gaussian blurring and 
whitening in conjunction and separately proved to perform worse.



figure 2: The effects of pre-processing on two extremely different faces
After prepossessing the training data, we divide the unlabeled data into several sets 

of chunks, such that we can process them without exhausting the limitations of a typical 
cdf machine’s resources. For each chunk of the unlabeled data we project the faces onto the 
precomputed top 55 components of the PCA decomposition of the unlabelled set. As we have 
also projected the labeled training example onto the same components, we can use k nearest-
neighbors to assess what the probable emotion of the face from the unlabeled set. If 12 of the 
nearest neighbours from the training set all share the same emotion, the unlabeled face is labeled 
with the same emotion and added to the training set. 

When testing locally and attempting this expansion using a training set and a set aside 
validation set, using 55 components and 12 neighbors gave us an accuracy of 100% in the 
relabeling, but were only able to obtain around 5% of the validation set as new examples. 
However, given the volume of images in the unlabelled set, we were able obtain around 1500 
extra examples after one pass. In theory, we could keep expanding the training set by running 
multiple passes on the unlabeled set, but we run into memory problems on the second pass (now 
that the training set is much larger, k nearest neighbours takes up a lot more memory, even with 
careful chunk-by-chunk processing).

Finally, given this set of expanded training examples with the aforementioned 
prepossessing, a multinomial logistic regression classifier with L2-regularization (where lambda 
is 5*10^-3) is used to generate a model. When training this model, we changed the “tolX” option 
to 10^-3, to halt training earlier, thus avoiding overfitting.
 
c)
When separating the training data into random sets of training and validation data, the algorithim 
performs on average with accuracy of 76%. The breakdown of the effectiveness of our steps on 
the kaggle test set can be seen in the following:
 

Method used Accuracy 
on Test set

Accuracy on 
Validation set

normalizing + masking + PCA assisted training set expansion + 
MLR classifier with penalization of 5e-3 run with new tolX

71.05623 74.12

normalizing + masking + PCA assisted training set expansion + 
MLR classifier with penalization of 5e-3

70.57416 76.06



normalizing + masking + PCA assisted training set expansion + 
MLR classifier with penalization of 1e-2

67.46411 75.54

similar masking/normalizing as below but with linear svmm 66.74641 72.12

blurring + normalize + masking + Softmax classifier with 
penalization of 1e-2

70.09569 74.02

normalizing + masking + regularized weighting MLR 70.33493 74.43

masking + normalization + MLR 69.85646 74.02

Simple MLR with face normalization 68.18182 73.33

 
Below we compare our algorithms performance, to that of the given handout classifier and our 
pca decomposition with k-nearest neighbours classifier.
 
As the handout code baseline achieves an average of 69.74 accuracy on the set aside validation 
code and 68.89% on the kaggle test set, it is clear that our algorithm performs better. This 
improvement is likely a result of regularization, better initial data processing and limiting over 
fitting by using less iterations than the default tolerance would allow for.
 
In comparison, our experiments with a PCA based decomposition with k-nearest neighbours as a 
classifier yielded the following results on the set aside validation set.

 100 
components

75 
components

50 
components

20 
components

10 
components

12 
neighbours

  50.60% 50.77%  

8 neighbours 51.45% 51.97% 51.97% 52.48% 46.15%

5 neighbours 50.26% 51.62% 49.91% 50.26%  

 
Narrowing the search around 20 components and 8 neighbours

 18 components 19 components 20 components

10 neighbours  52.14%  

9 neighbours 52.14% 53.16% 52.65%

8 neighbours  52.82% 52.48%

 



We tried comparing the performance of PCA between decomposing just the training set and the 
unlabelled set. Running this using PCA obtained from just the labeled set, gives 51.28%. Almost a 2% 
reduction.
 
After adding normalization to the faces and using the above optimal of 19 components and 9 neighbours, 
an accuracy of 61.88% was obtained using PCA components of the labeled training data.
 
We also found that normalizing the data allowed us to use more PCA components without degrading 
performance- intuitively, we decreased the useless and misleading variation in the data, that might arise 
from differences in skin color or image lighting. After this normalization, the PCA components that 
would represent those variations are no longer present:

Neighbours/comps 40 50 55

15  64.79%  

12  65.13% 65.64%

9 62.56% 63.76%  

 
 
d) Though the algorithm seems to perform well locally, results of the model on the kaggle 
set seem to average around 71.05%. This could be the result of a bias in either the training or test 
sets. It may also be a case of over fitting, despite using less iterations in our training and 
regularization to combat such overfitting.  We could further improve our results with increased 
preprocessing. Though we normalize and try to isolate the area of the face we are looking at, 
there isn’t any guarantee that the facial features of each training face actually overlap. It may be 
possible to fix this by computing a homography and warping all of the test faces to one common 
face, such that the major facial features overlap and are of similar scale. Computing this 
homography would involve blurring each face by a large radius blurring kernel, calculating the 
gradient on each image and then computing an optimal homography per face. This homography 
could then be used on the unblurred faces to align their facial features and improve our results.
 
e) No outside sources were used.
 
f) The topmost script is classifyScript.m

Since we do processing on the unlabelled set (which takes up a lot of space in memory), 
we choose to store it in a global variable called BIGDATA, to avoid copy on write operations 
typically done by matlab when passing variables into functions. As such you will see this being 
declared in classifyScript.m, and we request that the unlabelled data set is not passed to any 
functions using other methods.

Additionally, a lot of intermediate files are generated when training the model, so 
these .mat files should be deleted if a new training or test set is used when running the script.


