
CSC 420: Final Project report

Alexander Kondratskiy g9sash 996366285
Rohan Chandra g9chandr 996274142

Jiwoong Im g0d 996835732

Component 1:

Our algorithm functions in three major phases that enable us to assign and maintain
flower labels across a pair of successive frames in a video sequence. To discover the location
of potential flowers, we determine regions of yellow and brown and use the intersection of these
regions to create potential locations of flowers. We fit circles to these intersected regions and
use these circles as the locations of the flowers in a given frame. To find the correspondence of
flowers detected in this manner between two frames, epipolar geometry is used to narrow the
region in which a flower may have moved from the first frame to the later frame. Within this
region various heuristics are then used to create a correspondence of flowers between frames.

● Step 1 - determining potential flower locations:

To find potential areas where a flower may reside we first detect regions of yellow. Our
method uses the starter code provided to generate a set of points where the yellow slab
detector was triggered. A connected components method is then run on these points to group
sets of nearby points into a set of components.

figure 1: the connected components generated by the points found by the yellow slab detector

However, simply using the yellow slab detectors response is not enough to be a sufficient
indication of the presence of a flower, as many other objects, such as leaves, may generate a
reasonably sized component.

It was noted that many of the erroneously detected components lacked a dark brown center, as
would be expected of a typical flower. Thus, a secondary set of components corresponding to
these brown centers were generated using the provided starter code for matching areas of
similar mean and covariance across the image.

figure 2: the connected components generated by the points found by brown covariance detector

These two sets of connected components could then be combined in order to find the regions
that were most likely to be a flower. In both sets, the connected components were expanded by
using a form of gaussian blurring and then clipping the values to 0 or 1 below and above a given
threshold. Thus edgels found on the border of regions of yellow and brown should have
significant overlap when the intersection of these expanded masks of brown and yellow regions
was computed. This gave us edgels that were mainly around the flower centers to which we
could then fit circles.

figure 3: The final set of edgels produced via this method from the frame seen on the right

● Step 2 - Refining determined components into labelled flowers:
Given the final set of edgels produced in the previous section, it is possible that a group of
edgels in the same connected component may belong to a different flower center than another
group of edgels, or that some of the edgels in the cluster may have been erroneously produced.
To resolve the initial issue of clustered flowers and misleading edgels, we fit circles to the flower
centres in the following way. Components that have too few supporting edgels are removed
and, for each remaining component, circles are fit to the component’s supporting edgels.This
circle fitting is accomplished via the same method as was used in assignment two, with some
tweaking to the algorithm to fit the situation. In particular, any proposed circles that do not
contain enough brown pixels within, and yellow pixels on the outside are rejected. This combats
erroneous circles that fit to the petals, instead of the center.

figure 4: The final set of detected flowers for the given frame.

● Step 3 - Generating flower correspondence between two frames.
Given two separate frames in which flowers have been detected in this manner, we can then
begin to generate a correspondence of the identified flowers. We use a two stage method where
we first iteratively try to find correspondences between flowers using epipolar geometry, and
then in the second stage we try to find correspondences in past frames for any unmatched
flowers using homographies.

1 - Iterative initial correspondence.
Details of the implementation of our epipolar geometry method, specifically the

determination of the F matrix, can be found in the report of component 3. Once the F matrix has
been discovered using SIFT points, we use it to find the corresponding epipolar line in the
second frame of each flower in the first frame.

figure 5: frame 100 shown on the left, with the corresponding epipolar lines of each flower center
overlayed onto frame 150 shown on the right.

New flower centers are then detected in the new frame (frame 150 in the above case) as
described previously, and the initial correspondence is determined by the following heuristics.
We compare the perpendicular distance of every flower discovered in the new frame to the
epipolar line of a flower from the previous frame. We then compare the straight line euclidean
distance of every new flower to the flower from the previous frame, under the assumption that,
within only 20-50 frames, a single flower cannot move very far from its starting position. This is
to help with cases where two or more flowers lie on the same epipolar line, and would thus have
a very similar perpendicular distance. Initial correspondence is determined as the min of the
sum of these two distances with more importance given to distance to the epipolar line (by
scaling up the value). Giving more importance to epipolar distance is very beneficial, as can be
seen in the following figure:

figure 6: Two successive frames (541 and 561) where a very bad mislabeling occurs, when running the
matching algorthim without giving more weight to epipolar distance. Due to the specific camera
movement, wrong flower pairs line up at close pixel positions between the two frames. Since epipolar
distance is not given more weight, euclidean distance takes precedence and 33 is mislabeled as 13, 13
becomes 6, and 6 becomes 16.

However, at the end of this initial matching, it is possible that newly discovered flowers have no
sufficient match from the previous frame. We use the matched pairs to calculate an approximate
homography (assuming most matches are correct), between the two frames to better inform the
next iteration of the process. We then repeat the whole stage from scratch, but with euclidean
distance now measured between flowers in the first frame, and flowers from the second frame
that have been warped by this homography. Euclidean distances for correct matches should
shrink given the homography, and more flowers are matched as a result. The benefit of this
method can be seen in the following two figures:

figure 7: two successive frames with labeled flowers, without using homographies and iterative
matching. Flowers labeled blue in the frame on the right denote flowers that got matched to the ones from
the previous frame, while those labeled red were unmatched. As you can see, the flowers labeled 20 and
24 in frame 61, were mislableled as 19 and 11 in frame 81 respectively. This is because all 4 flowers lay
on the same line, and taking the euclidian distance between the two frames without a homography
resulted in a mismatch. Due to the wrong labeling of these two flowers, new labels were introduced for
the flowers that should have been matched.

figure 8: two successive frames with labeled flowers, using homographies and iterative matching. As
can be seen, all flowers are matched correctly after the last iteration of matching. The first iteration of
matching would essentially be used to inform the homography, and any successive ones will refine it and
produce a better matching.

Still, at the end of the iterative procedure, unmatched flowers may still be left over. It is possible
that these flowers are new entities that were never tracked before, or that they are flowers that
were tracked at some point in the past, but, at some point in the sequence, became occluded.

To detect the latter case, we try to look at the previous frames to find possible matches.

2 - resolving unmatched flowers
As we find matches between successive frames, a homography is also found and stored

for that pair of frames (using the matched flower centers as points). We are then able to use this
homography to look at a neighbourhood around the unmatched point in previous frames to see
if there is an older flower with no corresponding flower in the current frame. We continue to
repeat this process of matching as the sequence progresses, and are thus able to maintain
labels of flowers throughout the sequence even through occlusion or misdetection.
For a given proposed flower, we find the closest match out of the previous 4 frames, and do not
accept the match if the distance is too large (the proposed flower has never been seen). The
distances are also cumulatively amplified the further back we look, so that matches from more
recent frames are favoured over those from older frames. In the following figures, a few notable
successes of our algorithm are detailed.

figure 9: in this frame, note the position of flower 12.

figure 10: Due to movement of the camera, the flower labelled 12 in the previous frame is no longer
visible

figure 11: flower 12 then reappears in frame 461. As can be seen, the correct flower label is recovered by
looking into past frames.

Here is the first and last frame of tracking through the whole sequence, each image 20 frames
apart:

figure 12: An example of tracking through 660 frames.

Most of the flowers seen in frame one have been tracked through to the last. Notably, flower 6
has moved quite a bit relative to other, but has been labelled correctly. This is due to the fact
that the flower was not occluded during any part of the sequence. Flower 31 was actually 9 at
the start of the sequence, but was occluded near the start, and moved a great distance relative
to its original position.

Limitations:

● When initially determining where the flowers reside in an image, our algorithm may
generate a false positive if a patch of light brown ground lies directly underneath the
yellow petals of the flower. This false positive can be seen in figure 4, point 19.

● Our implementation is very specific to a range of yellow and brown as being the key
components of a flower. One would need to recalibrate these metrics if a new set of
sequence with drastically different appearing flowers.

● If the first stage mislabels flowers, the second stage cannot correct such errors, as seen
in the figures below

figure 13: Three frames are shown around the location of the same flowers: frames 141, 151, and
261 respectively. Flower 9 gets occluded by 7 and then emerges on the other side. Our algorithm
mislabels this flower as a new one, since its movement does not follow the approximate
homography of all other flowers. When it reappears in frame 261 it is treated as a new flower.

Improvements:

● In some frames, the brown flower center is not detected as those centers are brighter
than the rest. A better mean and covariance of brown could be used to improve results.

● In some cases weighing epipolar distances too much, results in mismatches when a lot
of flowers lie along a single line. Conversely putting too little emphasis results in errors
shown in figure 6. Better or even dynamic calibration of this parameter would give better
results.

● We do not utilize any of the information that could be gained from the frames that occur
between the frames we analyze at 20 or 50 frame intervals. We might be able to improve
our results by using the motion tracking code developed in part 2, specifically by
attaching a patch to each flower and tracking its movement between each frame we
analyze. This additional information gained by the motion tracking would help us further
narrow down the region along the epipolar line where the corresponding flower is found.

● For better tracking of occluded flowers, a motion vector could be stored per flower, in
relation to the approximate plane of all the matched flowers (found by the homography).
The positions of currently invisible flowers could then be extrapolated, and matched to
any “new” flowers.

Component 2:

We begin by selecting the patches we will track by randomly assigning patch centers
across the image, with some equal distribution in each portion of the image. The number of
patches is then reduced by only retaining those patches who have a high cumulative Harris
operator value across their patch comparative to other patches in their section of the image.
These patches are then tracked using similarity transformations, assuming brightness
constancy. Finally, the tracked patches are validated, to detect patches that have drifted from
what they were originally tracking, by comparing several hogs within the patch in the original
frame compared to several hogs in the same location (relative to the patches movement) in the
new patch.

● Step 1 - Patch generation:
In order to avoid having a build up of proposed patches in a small region of the image,

we divide the image into subsections and randomly assign an equal number of patch centers to
each of these subsections. We then calculate the average value of the R value of each pixel in
the given patch, where R = det(H) - (Trace(H)).^2. This value is used to determine which
patches are most suitable for tracking, as a high average R value tends to be indicative of a
patch that contains a set of gradients that are not near parallel and can be used to determine
changes in scale, rotation and translation between frames. Subsequently, of those patches that
were not culled due to a comparatively low R value, patches that significantly overlap with
another patch are removed. The effects of the culling can be seen in the figure below.

figure 14: 200 patches were randomly placed in this image, those patches seen in red would be retained
by our algorithm after low R value culling, those in blue would be removed. Significantly intersecting
patches would be removed afterwards.

● Step 2 - determining the similarity transformation:

To track the individual patches, from one frame to the next, we use a function that is a
modified version of the motionTutorial, that does similarity transforms. Given two successive
frames (im0 and im1) and a patch to track in the first image, we perform the following actions:

● Since the patch may be rotated and scaled, we crop it to its original size and orientation,
by using a similarity transformation.

● The patch is blurred, and a gradient image is found.

● Given a predicted translation from the previous tracking, we crop the patch from the
predicted location in im1 to the same size and orientation, and blur it. To clarify, we do
not also use predicted scale and rotation, so we reuse these parameters from the first
patch. In effect, we always crop using a patch with the same size and rotation, just from
two different locations in im0 and im1.

● Having both cropped patches (which should be the same size after cropping), we can
solve for a least squares approximation of the similarity transform between them.
(Details to follow)

● Obtaining this approximation, we perform several iterations, each time readjusting the
position where the second patch is cropped (but not scale and rotation).

● Finally, we apply this newly found transformation to the polygon defining the patch in the
previous frame, and store this new patch for the new frame.

Given the transformation relative to an origin:

u x= cos −sin
sin cos  xd 1d 2

Constraints are:

0=u x −x 
T
⋅∇ f x , t  f t x , t 

0= ∇ f x , t 
T
⋅Ax a−x  f tx , t 

Least Squares error function:

E=∑
x

 ∇ f x ,t T⋅Axa−x  f t x , t 
2

Normal Equations become:
∂ E
∂ a

=0

∂ E
∂ a

=∑
x

g x  ∇ f T AT⋅ ∇ f T⋅Aa−x f t 
∂ E
∂ a

=∑
x

g x A
T ∇ f ⋅ ∇ f T⋅Aa−x  f t 

∂ E
∂ a

=∑
x

g x AT ∇ f⋅ ∇T Aa− ∇ f T x f t 

0=∑
x

g xAT ∇ f ∇ f T Aag xAT ∇ f  f t−
∇ f T x

∑
x

g x A
T ∇ f ∇ f T Aa=∑

x

g xA
T ∇ f  ∇ f T x− f t

Finally giving the formulas that we used in the similarity transform code:

a=M−1b
M=∑

x

g xA
T ∇ f ∇ f T A

b=∑
x

g x AT ∇ f  ∇ f T x− f t

● Step 3 - Validation of patches:

As we track these patches across the sequence, it is possible that patches have begun
to drift away from the region they were originally tracking, due to representational errors by the
similarity transformation, i.e numerical issues or inability to represent skew, or due to non
uniform motion within the patch. We validate patches by assigning a set of HoGs to them,
typically 9 hogs within the patch. We calculate the orientation and magnitude of the constituents
of each HoG of the patch in the first frame of the sequence, when tracking of the patch began.
These values are then compared to those gained from identically placed hogs of the patch in
the current frame. If these differ to too great of a degree, the patch is considered to be
erroneous and is culled. Additionally we check the difference in each pixel as it appears in the
current and first instance of the patch. If the difference at the pixel location between the two
patches is too large we consider it be erroneous. If the ratio of erroneous pixels to normal pixels
in the patch is too large, we again flag the patch as having deviated and should be culled. We
combine these two methods, as the HoG method should capture a larger view of structural
changes in a local neighbor hood around the HoG centre, but may not notice uniform changes
of pixel intensity in its region. Conversely, the ratio of bad pixels informs us of very small, pixel
granular, changes in the patch, but may not be sensitive enough to capture larger structural
changes if these changes are isolated enough to not meet the ratio threshold. Examples of
when this would take effect is shown below.

figure 15: A patch that has become erroneous due to the back ground moving in a different way than the
foreground.

figure 16: Another patch that has become erroneous due to the back ground moving in a different way
than the foreground.

Limitations
● Our patch selection favors patches that lie on regions where flowers or leaves border the

background. These regions have strong opposing gradients that in theory would enable
good tracking, but do not move uniformly and produce poor patches for tracking.

● The validation code tends to be overly harsh for small deviations in patches if the patch
contains weak gradients (i.e is located entirely on a bckground leaf). However, weaker
thresholds didn’t prove to be adequate to handle the case in which results from the
similarity transformation encouraged the patch to rotate and expand, likely due to the
inability of representing patch skew.

● When new patches are added, we do not check if the region previously held a patch that
was culled for deviating from its original place. In practice, we tend to have a few
locations of where the foreground meets the background where patches are
continuously added and removed (at a frequency of about 20-30 frames) throughout the
sequence.

Improvements
● Implement affine transformation to replace similarity transformation and enable our

algorithm to track skew.

● Store locations of patches that were previously culled and factor this into the generation
of new patches, to avoid putting patches on regions that are not suitable for tracking,
such as an area overlapping the background and foreground.

Component 3

Our algorithm functions in three major phases that enable us to solve F matrix to
compute the epipolar line of a given point, and estimate H matrix to warp the images. Given two
frames, sift points are determined in each image and the correspondence between points is
then found. Using this correspondence, it is possible to begin ransack trials to estimate the F
matrix of the two images. Additionally this correspondence can be used to perform a series of
RANSAC trials in order to determine the homography that warps from one frame to the other.

Step 1. Detecting and matching SIFT points between two images.

To solve the F and H matrix, we need a certain number of corresponding points to have
the minimum constraints necessary to compute our estimates. To figure out these points and
there corresponding points in the other image, SIFT points are utilized, as it is possible to
generate a reasonably large number of corresponding points between the images. The Vl_Feat
sift modules are used to identify sift points from the two image separately, and subsequently
match corresponding points that appear in both images.

figure 17: These red circles are the SIFT matched points from two images.

Step 2 Estimate the F matrix for the image pair.
To estimate the F matrix, we perform the following steps:

1) Random pick 8 points from the SIFT point correspondence previously extracted. Solve the F
matrix using those 8 points

We need a minimum of eight points to estimate the F matrix. A worse estimation may
produced if more than eight points are selected, as we are basing our estimate on the
assumption that the eight points are perfect inliers. However, if more than eight points
are chosen then the probability that all of the points are actually inliers decreases
proportionally to the number of points and the F matrix generated will have a larger
degree of error.

2) Compute the error of epipolar line
To find the error of epipolar line, we take the perpendicular error value of the warped
point to the epipolar line it originally generated.

3) Given a certain threshold, determine the inliners based on this distance.

4)Store the inliners, and repeat this for several trials,
We want to repeat this several times, as our randomly selected points may not all be
inliers, producing errors in the estimate of the F Matrix. Thus, we retain all the inliners
that we found in the preceeding steps.

5) With all of the inliers, recompute the F matrix again

figure 18: Epipolar lines of applying F matrix on points in the second frame overlayed over the first frame.

figure 19: Epipolar lines of applying F matrix on points in the first frame overlayed over the second
frame.

Step 3a. Estimate a homography H which accounts for a “dominant” or reference plane
in the scene

1) Find four pairs of corresponding SIFT points in order to determine the homography.

We need minimum of four points to estimate the
H matrix. The reason why we do not take more than four pairs is the same reason as
was the case in estimating the F matrix.

2) Compute the error distance value of each SIFT points
To find the error distance value, we compute use a pair of corresponding sift points and
the homogrpahy that relates the two images. We use the homography to warp one of the
corresponding points to the other image, then measure the distance from the warped
point to the point it originally corresponded to.

3) Determine inliners by comparing error value to a given threshold

4) Store the inliners, and repeat this for several trials.
As was the case in the F matrix, our results may have been generated from randomly

selected points that were not entirely made up of inliers. Thus we can further refine our estimate
in subsequent trials.

5) Recompute the H matrix with all the inliners.

Step3b. Rewarp one of these images by the homography H, so that the dominant plane is
stationary in the resulting image pair.

figure 20: The first frame shown on the left, a frame 50 frames ahead show on the right

figure 21: The warped image from the second frame to
the first first frame on the Left. The right image shows the displacement of the warping.

Step 4. Describe precisely the epipolar lines, and the displacement of corresponding
points, for this new pair of images.
Given a homography H that maps ground points from im0 into ground points in im1, and the

fundamental matrix F that relates x LF  xR=0 , we can then calculate a new fundamental

matrix to display epipolar lines in the warped image:
x LF  xR=0

x LF H
−1H  xR=0

x LF H
−1
H x R=0

x LF H
−1
 xRwarped =0

Where x Rwarped are image coordinates in the warped right image. Thus the new fundamental

matrix is F H −1 .

figure 22: given two frames im0 and im1, and homography H that warps from im1 to im0 such
that the dominant plane is stationary, the top image shows the epipolar lines between that
warped image and im0, whereas the bottom is the epipolar lines displayed on the warping of
im1.

Instructions for running on a different image sequence:
To run on a different image set, modify the “infile” parameter that appears at the top of each
component.

Other relevant controls, such as the start and end frame, number of frames to batch, number of
patches to track, etc should be located at the top of each component.

Group responsibilities:
Alexander Kondratskiy:

● Flower database framework, circle fitting (reusing my code from A2), resolving flower
matches using rohan’s scores, and looking up flowers in previous frames for component
1.

● Similarity transform solving code, patch database framework, and cropping for
component 2.

● Refactoring tutorial code into functions for component 3.
● Various helper function refactoring for the utils folder.

Jiwoong Im:
● Generating the random initial patches, and evaluating those random patches with R

values per patch. Implemented harris operator matrix
● Dividing image into sections to keep track the location of losing patches, and responsible

for adding new patches onto the corresponding image sections.
● Validating patches by counting number of pixels that has certain amount of difference in

their intensity.
● Implementing similarity matrix
● Connected component for separating flower clusters.
● Detecting brown colors to get the mask for flower centers.

Rohan Chandra:
● Averaged R value calculation, patch comparison by hogs and scoring, patch database

first and current frame storing, bbox soft cropping.
● Sift points and correspondence for initial homography estimate
● connected components and intersection to obtain final edgels
● circle fitting evaluation
● obtaining epipolar line in other image given a point and distance of points between

frames in euclidean distance

